Topics in Distributed Algorithms: On TDMA for Ad Hoc Networks and Coded Atomic Storage Algorithms

Thomas Petig

Chalmers University of Technology Distributed Computing and Systems Chalmers university of technology

October 19, 2015

Distributed Algorithms

- ► Computational unit: node
- Communication channels

We model the system as a graph, where nodes \rightarrow vertices and communication channels \rightarrow edges.

What faults are considered:

- ► Transient fault: data gets corrupted
 - $\blacktriangleright \ \rightsquigarrow Self-stabilization$
- ► (Semi) Byzantine failure: node behaves arbitrarily
 - $\blacktriangleright \ \rightsquigarrow Erasure \ codes$

We are going to discuss these publications:

- Self-stabilizing TDMA Algorithms for Wireless Ad-hoc Networks without External Reference.
- Robust and Private Distributed Shared Atomic Memory in Message Passing Networks.

Self-stabilizing TDMA Algorithms for Wireless Ad-hoc Networks without External Reference

Med-Hoc-Net 2014 as brief announcement: SSS 2013

Thomas Petig, Elad M. Schiller, Philippas Tsigas

The Problem, The Challenge and Our Approach

Outline

The Problem, The Challenge and Our Approach

Our Contribution

Lower Bound

Algorithms

Conclusions

TDMA Frame

We divide the radio time is divided into: slots, frames, super frames:

Given a communication graph:

The Challenge

Collisions: concurrent transmissions might lead to packet omission.

We do **not** consider:

- ► external time references [Herman-Tixeuil ALGOSENSORS'04],
- ► external location references [Viqar-Welch ALGOSENSORS'09],
- collision detection,
- base stations for scheduling transmissions.

The Challenge

We have to show that communication is possible!

Collisions: concurrent transmissions might lead to packet omission.

We do **not** consider:

- ► external time references [Herman-Tixeuil ALGOSENSORS'04],
- ▶ external location references [Viqar-Welch ALGOSENSORS'09],
- collision detection,
- base stations for scheduling transmissions.

We focus on self-stabilizing algorithms that their converges considers both:

- clock synchronization, and
- time slot assignment.

Our Contribution

Outline

The Problem, The Challenge and Our Approach

Our Contribution

Lower Bound

Algorithms

Conclusions

Basic limit on the bandwidth utilization of TDMA in wireless ad hoc networks:

 τ < max{2δ, χ₂}, where χ₂ is the chromatic number for distance-2 vertex coloring.

Existent proves of collision-free self-stabilizing TDMA without assuming external reference availability.

Outline

The Problem, The Challenge and Our Approach

Our Contribution

Lower Bound

Algorithms

Conclusions

The δ leaves can block up to 2δ slots. This leads to 2δ as lower bound. Note that there is a algorithm with frame size of $\mathcal{O}(2\Delta)$ [Busch, et al. Distributed Comp. '08].

The δ leaves can block up to 2δ slots. This leads to 2δ as lower bound. Note that there is a algorithm with frame size of $\mathcal{O}(2\Delta)$ [Busch, et al. Distributed Comp. '08].

The δ leaves can block up to 2δ slots. This leads to 2δ as lower bound. Note that there is a algorithm with frame size of $\mathcal{O}(2\Delta)$ [Busch, et al. Distributed Comp. '08].

Outline

The Problem, The Challenge and Our Approach

Our Contribution

Lower Bound

Algorithms

Conclusions

We focus on the communication to a single neighbor.

We focus on the communication to a single neighbor.

We focus on the communication to a single neighbor.

We focus on the communication to a single neighbor.

 \Rightarrow Communication is possible if $\tau \geq 4\delta$.

Upon packet reception:

- 1. check clock (adjust and drop timeslot if higher)
- 2. check acknowledgement (drop timeslot if missing)
- 3. merge neighborhood

Upon timeslot:

- 1. If assigned TDMA timeslot then transmit.
- 2. If randomly chosen free timeslot
 - 2.1 transmit
 - 2.2 chose new random timeslot
 - 2.3 If no TDMA timeslot assigned then take this one

Clock synchronization.

Clock synchronization.

Clock synchronization.

Clock synchronization.

.

Clock synchronization.

.

Clock synchronization.

\Rightarrow All clocks are synchronized!.

Copyright 2015 Thomas Petig

Upon packet reception:

- 1. check clock (adjust and drop timeslot if higher)
- 2. check acknowledgement (drop timeslot if missing)
- 3. merge neighborhood

Upon timeslot:

- 1. If assigned TDMA timeslot then transmit.
- 2. If randomly chosen free timeslot
 - 2.1 transmit
 - 2.2 chose new random timeslot
 - 2.3 If no TDMA timeslot assigned then take this one

The convergence proof:

1. every node can reach a neighbor within an expected time,

The convergence proof:

- 1. every node can reach a neighbor within an expected time,
- 2. a converge-to-the-max approach for clock convergence [Herman and Zhang, SSS '08],

The convergence proof:

- 1. every node can reach a neighbor within an expected time,
- 2. a converge-to-the-max approach for clock convergence [Herman and Zhang, SSS '08],
- 3. each node gets a time slot that is unique within its neighborhood,

The convergence proof:

- 1. every node can reach a neighbor within an expected time,
- 2. a converge-to-the-max approach for clock convergence [Herman and Zhang, SSS '08],
- 3. each node gets a time slot that is unique within its neighborhood,
- 4. there are no packet collisions

TDMA Frame

We divide the radio time is divided into: slots, frames, super frames:

A slot can be used for a data packet or a control packet. A data packet is send on a fixed slot within a **frame**.

During legal executions:

- ► TDMA time slots are aligned,
- ► each node successfully sends data packets once a frame,
- control packets do not collide.

Conclusions

Outline

The Problem, The Challenge and Our Approach

Our Contribution

Lower Bound

Algorithms

Conclusions

Conclusions

Our system settings do not consider:

- ► external time reference,
- location reference,
- collision detection,
- ► base station.

Is it possible to combine the positive effects of TDMA and CSMA? In our system settings:

- No, if the frame size is less than 2δ .
- Yes, if the frame size is larger than $\max\{4\delta, \chi_2\}$.

A preliminary implementation validates the setup.

Brief Announcement: Robust and Private Distributed Shared Atomic Memory in Message Passing Networks

PODC'15

Shlomi Dolev, Thomas Petig and Elad M. Schiller

Copyright 2015 Thomas Petig

Content

We focus on emulation **shared memory** in **message passing** networks.

Opportunity: Cadambe et al. (2014): A coded shared atomic memory algorithm for message passing architectures.

We are going to see how to provide

- robustness against semi-Byzantine attacks,
 - ► i.e., corruption of stored data,
- ► and **privacy** of the data.

in these networks.

Content

We focus on emulation **shared memory** in **message passing** networks.

Opportunity: Cadambe et al. (2014): A coded shared atomic memory algorithm for message passing architectures.

We are going to see how to provide

- robustness against semi-Byzantine attacks,
 - ► i.e., corruption of stored data,
- ► and **privacy** of the data.

in these networks.

We use Reed-Solomon codes

(Most) related work: Attiya, Bar-Noy, and Dolev (ABD), Cadambe et. al

Cadambe et al. address the following:

- atomicity and liveness and
- storage and communication costs.

They solve atomicity and liveness in a ABD-like manner.

- length k vector \rightarrow length N vector.
- tolerates $\leq N k$ erasures.

- length k vector \rightarrow length N vector.
- tolerates $\leq N k$ erasures.

- length k vector \rightarrow length N vector.
- tolerates $\leq N k$ erasures.

- length k vector \rightarrow length N vector.
- tolerates $\leq N k$ erasures.

Erasure Coding: (N, k)-maximum distance separable codes

- length k vector \rightarrow length N vector.
- tolerates $\leq N k$ erasures.

Erasure Coding: (N, k)-maximum distance separable codes

- length k vector \rightarrow length N vector.
- tolerates $\leq N k$ erasures.

Erasure Coding: (N, k)-maximum distance separable codes

- length k vector \rightarrow length N vector.
- tolerates $\leq N k$ erasures.

- ► *N* servers.
- ► $\left\lceil \frac{N+k}{2} \right\rceil$ -quorums.

- ► *N* servers.
- ► $\left\lceil \frac{N+k}{2} \right\rceil$ -quorums.

- ► *N* servers.
- ► $\left\lceil \frac{N+k}{2} \right\rceil$ -quorums.

- ► *N* servers.
- ► $\left\lceil \frac{N+k}{2} \right\rceil$ -quorums.

- ► *N* servers.
- ► $\left\lceil \frac{N+k}{2} \right\rceil$ -quorums.

- ► *N* servers.
- ► $\left\lceil \frac{N+k}{2} \right\rceil$ -quorums.

Our contribution

We address:

- ► Robustness against semi-Byzantine attacks.
- Privacy of the data.

We use

- ► (N, k)-Reed-Solomon codes and
- Berlekamp-Welch error correction.

- (N, k)-Reed-Solomon code.
- ► For *e* corrupt elements, we need to read 2*e* more elements.

- (N, k)-Reed-Solomon code.
- ► For *e* corrupt elements, we need to read 2*e* more elements.

- (N, k)-Reed-Solomon code.
- ► For *e* corrupt elements, we need to read 2*e* more elements.

- (N, k)-Reed-Solomon code.
- ► For *e* corrupt elements, we need to read 2*e* more elements.

- (N, k)-Reed-Solomon code.
- ► For *e* corrupt elements, we need to read 2*e* more elements.

- (N, k)-Reed-Solomon code.
- ► For *e* corrupt elements, we need to read 2*e* more elements.

- (N, k)-Reed-Solomon code.
- ► For *e* corrupt elements, we need to read 2*e* more elements.

- ► $\left\lceil \frac{N+k+2e}{2} \right\rceil$ -quorums.
- Up to $f < N \left\lceil \frac{N+k+2e}{2} \right\rceil$ failures.
- ► Up to *e* semi-Byzantine servers.

- ► $\left\lceil \frac{N+k+2e}{2} \right\rceil$ -quorums.
- Up to $f < N \left\lceil \frac{N+k+2e}{2} \right\rceil$ failures.
- ► Up to *e* semi-Byzantine servers.

- ► $\left\lceil \frac{N+k+2e}{2} \right\rceil$ -quorums.
- ► Up to f < N [N+k+2e] failures.
- ► Up to *e* semi-Byzantine servers.

- ► $\left\lceil \frac{N+k+2e}{2} \right\rceil$ -quorums.
- ► Up to f < N [N+k+2e] failures.
- ► Up to *e* semi-Byzantine servers.

- ► $\left\lceil \frac{N+k+2e}{2} \right\rceil$ -quorums.
- ► Up to f < N [N+k+2e] failures.
- ► Up to *e* semi-Byzantine servers.

- ► $\left\lceil \frac{N+k+2e}{2} \right\rceil$ -quorums.
- Up to $f < N \left\lceil \frac{N+k+2e}{2} \right\rceil$ failures.
- ► Up to *e* semi-Byzantine servers.

- McEliece & Sarwate: Reed-Solomon codes are related to Shamir's secret sharing.
- ► Only sets of ≥ k server can reveal the secret.

Conclusion

Using special cases of coding (Reed-Solomon) and decoding (Berlekamp-Welch), we show:

- robustness, corrupted data by Byzantine server can be tolerated and
- ► privacy, even a small amount of server cannot restore the data.

We have seen how to address some faults and failures.

- The proposed TDMA algorithm adds predictability and reliability to communication.
- The proposed coded atomic storage algorithm adds robustness and privacy to storge.