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Distributed Algorithms
I Computational unit: node
I Communication channels

We model the system as a graph, where
nodes → vertices and
communication channels → edges.

Copyright 2015 Thomas Petig 2 / 36



Fault-tolerance

What faults are considered:
I Transient fault: data gets corrupted

I  Self-stabilization
I (Semi) Byzantine failure: node behaves arbitrarily

I  Erasure codes
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We are going to discuss these publications:
I Self-stabilizing TDMA Algorithms for Wireless Ad-hoc

Networks without External Reference.
I Robust and Private Distributed Shared Atomic Memory in

Message Passing Networks.
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Self-stabilizing TDMA Algorithms for Wireless
Ad-hoc Networks without External Reference

Med-Hoc-Net 2014
as brief announcement: SSS 2013

Thomas Petig, Elad M. Schiller, Philippas Tsigas
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TDMA Frame

We divide the radio time is divided into: slots, frames, super
frames:

super frame: τ frames

frame: τ slots
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The Problem

Given a communication graph:

construct a self-stabilizing, distance-2 coloring for TDMA slot
allocation.

Note that: ∆ ≤ δ2.

The assigned timeslot is used
to transmit a data packet in
every frame.

Free slots can be used for
control packets.
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The Challenge

Collisions: concurrent transmissions might lead to packet omission.

We do not consider:
I external time references [Herman-Tixeuil ALGOSENSORS’04],
I external location references [Viqar-Welch ALGOSENSORS’09],
I collision detection,
I base stations for scheduling transmissions.

We have to show that communication is possible!
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Our Approach

We focus on self-stabilizing algorithms that their converges
considers both:
I clock synchronization, and
I time slot assignment.
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Our Contribution

Basic limit on the bandwidth utilization of TDMA in wireless ad
hoc networks:
I τ < max{2δ, χ2}, where χ2 is the chromatic number for

distance-2 vertex coloring.

Existent proves of collision-free self-stabilizing TDMA without
assuming external reference availability.
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Lower bound

The δ leaves can block up to 2δ slots. This leads to 2δ as lower
bound. Note that that there is a algorithm with frame size of
O(2∆) [Busch, et al. Distributed Comp. ’08].
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Lower bound

The δ leaves can block up to 2δ slots. This leads to 2δ as lower
bound. Note that that there is a algorithm with frame size of
O(2∆) [Busch, et al. Distributed Comp. ’08].

frame = 11 slots
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Lower bound

The δ leaves can block up to 2δ slots. This leads to 2δ as lower
bound. Note that that there is a algorithm with frame size of
O(2∆) [Busch, et al. Distributed Comp. ’08].
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Algorithm

We focus on the communication to a single neighbor.

⇒ Communication is possible if τ ≥ 4δ

.
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Algorithm

Upon packet reception:
1. check clock (adjust and drop timeslot if higher)
2. check acknowledgement (drop timeslot if missing)
3. merge neighborhood

Upon timeslot:
1. If assigned TDMA timeslot then transmit.
2. If randomly chosen free timeslot

2.1 transmit
2.2 chose new random timeslot
2.3 If no TDMA timeslot assigned then take this one
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Algorithm

Clock synchronization.

⇒ All clocks are synchronized!

.
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Algorithm

Upon packet reception:
1. check clock (adjust and drop timeslot if higher)
2. check acknowledgement (drop timeslot if missing)
3. merge neighborhood

Upon timeslot:
1. If assigned TDMA timeslot then transmit.
2. If randomly chosen free timeslot

2.1 transmit
2.2 chose new random timeslot
2.3 If no TDMA timeslot assigned then take this one
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Algorithm

The convergence proof:
1. every node can reach a neighbor within an expected time,

2. a converge-to-the-max approach for clock convergence
[Herman and Zhang, SSS ’08],

3. each node gets a time slot that is unique within its
neighborhood,

4. there are no packet collisions

See the technical report for more information.
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TDMA Frame

We divide the radio time is divided into: slots, frames, super
frames:

super frame: τ frames

frame: τ slots

A slot can be used for a data packet or a control packet.
A data packet is send on a fixed slot within a frame.
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Algorithm

During legal executions:
I TDMA time slots are aligned,
I each node successfully sends data packets once a frame,
I control packets do not collide.
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Conclusions

Our system settings do not consider:
I external time reference,
I location reference,
I collision detection,
I base station.

Is it possible to combine the positive effects of TDMA and CSMA?
In our system settings:
I No, if the frame size is less than 2δ.
I Yes, if the frame size is larger than max{4δ, χ2}.

A preliminary implementation validates the setup.
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Brief Announcement: Robust and Private Distributed Shared
Atomic Memory in Message Passing Networks

PODC’15

Shlomi Dolev, Thomas Petig and Elad M. Schiller
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Content

We focus on emulation shared memory in message passing
networks.

Opportunity: Cadambe et al. (2014): A coded shared atomic
memory algorithm for message passing architectures.

We are going to see how to provide
I robustness against semi-Byzantine attacks,

I i.e., corruption of stored data,

I and privacy of the data.
in these networks.

We use Reed-Solomon codes
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Multi Reader Multi Writer Shared Memory in Message
Passing Networks

Writers Readers
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Multi Reader Multi Writer Shared Memory in Message
Passing Networks

(Most) related work: Attiya, Bar-Noy, and Dolev (ABD), Cadambe
et. al

Cadambe et al. address the following:
I atomicity and liveness and
I storage and communication costs.

They solve atomicity and liveness in a ABD-like manner.
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Erasure Coding: (N , k)-maximum distance separable codes

I length k vector → length N vector.
I tolerates ≤ N − k erasures.
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Coded Atomic Storage Algorithm

Writers ReadersServers

I N servers.
I dN+k

2 e-quorums.

We can tolerate stop-failed servers
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Our contribution

We address:
I Robustness against semi-Byzantine attacks.
I Privacy of the data.

We use
I (N, k)-Reed-Solomon codes and
I Berlekamp-Welch error correction.

Copyright 2015 Thomas Petig 31 / 36



Robust and Private Coded Atomic Storage

I (N, k)-Reed-Solomon code.
I For e corrupt elements, we need

to read 2e more elements.

We also need a bigger quorum
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Robust and Private Coded Atomic Storage

Writers ReadersServers

I dN+k+2e
2 e-quorums.

I Up to f < N − dN+k+2e
2 e

failures.
I Up to e semi-Byzantine

servers.

There is a one-to-one tradeoff
between allowed Byzantien
nodes and stop-failed nodes
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Robust and Private Coded Atomic Storage

Writers Readers

random

data

I McEliece & Sarwate: Reed-Solomon codes
are related to Shamir’s secret sharing.

I Only sets of ≥ k server
can reveal the secret.
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Conclusion

Using special cases of coding (Reed-Solomon) and decoding
(Berlekamp-Welch), we show:
I robustness, corrupted data by Byzantine server can be

tolerated and
I privacy, even a small amount of server cannot restore the data.
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Overall Conclusion

We have seen how to address some faults and failures.
I The proposed TDMA algorithm adds predictability and

reliability to communication.
I The proposed coded atomic storage algorithm adds robustness

and privacy to storge.
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